BOOM v2
نویسندگان
چکیده
This paper presents BOOM version 2, an updated version of the Berkeley Out-of-Order Machine first presented in [3]. The design exploration was performed through synthesis, place and route using the foundry-provided standard-cell library and the memory compiler in the TSMC 28 nm HPM process (high performance mobile). BOOM is an open-source processor that implements the RV64G RISC-V Instruction Set Architecture (ISA). Like most contemporary high-performance cores, BOOM is superscalar (able to execute multiple instructions per cycle) and out-oforder (able to execute instructions as their dependencies are resolved and not restricted to their program order). BOOM is implemented as a parameterizable generator written using the Chisel hardware construction language [2] that can used to generate synthesizable implementations targeting both FPGAs and ASICs. BOOMv2 is an update in which the design effort has been informed by analysis of synthesized, placed and routed data provided by a contemporary industrial tool flow. We also had access to standard singleand dual-ported memory compilers provided by the foundry, allowing us to explore design trade-offs using different SRAM memories and comparing against synthesized flip-flop arrays. The main distinguishing features of BOOMv2 include an updated 3-stage front-end design with a bigger set-associative Branch Target Buffer (BTB); a pipelined register rename stage; split floating point and integer register files; a dedicated floating point pipeline; separate issue windows for floating point, integer, and memory micro-operations; and separate stages for issue-select and register read. Managing the complexity of the register file was the largest obstacle to improving BOOM’s clock frequency. We spent considerable effort on placing-and-routing a semi-custom 9port register file to explore the potential improvements over a fully synthesized design, in conjunction with microarchitectural techniques to reduce the size and port count of the register file. BOOMv2 has a 37 fanout-of-four (FO4) inverter delay after synthesis and 50 FO4 after place-and-route, a 24% reduction from BOOMv1’s 65 FO4 after place-and-route. Unfortunately, instruction per cycle (IPC) performance drops up to 20%, mostly due to the extra latency between load instructions and dependent instructions. However, the new BOOMv2 physical design paves the way for IPC recovery later. BOOMv1-2f3i int/idiv/fdiv
منابع مشابه
Simulation and Control of Rotational Vibration of Sprayer Boom Using a Novel Suspension System
Sprayers are important tools in agriculture that usually moved on the field by tractor. Sprayers should distribute the constant rate of chemicals during various conditions encountered in the field. Unwanted vibrations of sprayer boom cause redaction of its life time and over doses and under doses of chemical sprayed on the field. Therefore, in this study a model of suspension system for rotatio...
متن کاملA “v2-f Based” Macroscopic K-Ε Model for Turbulent Flow through Porous Media
In this paper a new macroscopic k-ε model is developed and validated for turbulent flow through porous media for a wide range of porosities. The morphology of porous media is simulated by a periodic array of square cylinders. In the first step, calculations based on microscopic v2 − f model are conducted using a Galerkin/Least-Squares finite element formulation, employing equalorder bilinear ve...
متن کاملThe Effect of Economic Boom & Recession on Environmental Pollution in Iran: Focusing on Economic Sectors
In this research, we attempt to investigate the effect of economic boom and recession on environmental pollution in Iran through an asymmetric approach. To this end, an autoregressive approach with nonlinear distributive pause was used with the data for the period (1971-2017) to explain and describe the asymmetry; Accordingly, a basic model (for the entire economy) and three partial patterns (f...
متن کاملDynamic Simulation of the Harvester Boom Cylinder
Based on the complete dynamic calculation method, the layout, force, and strength of harvester boom cylinders were designed and calculated. Closed simulations for the determination of the dynamic responses of the harvester boom during luffing motion considering the cylinder drive system and luffing angle position control have been realized. Using the ADAMS mechanical system dynamics analysis so...
متن کامل